Weakly maximal subgroups of branch groups

Paul-Henry Leemann

31 March 2020

Slides available at www.leemann.website/slides/weaklymaximal.pdf

Main goals

- Describe two families of weakly maximal subgroups of branch groups;
- Give several characterizations of these families;
- Show that every weakly maximal subgroup of the first Grigorchuk group belongs to one of these two families.

Introduction

Branch groups Weakly maximal subgroups Weakly maximal subgroups The main theorem

Two types of weakly maximal subgroups

Generalized parabolic subgroups Block subgroups

Technical tools

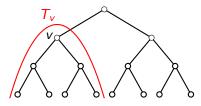
The non-rigidity tree Sections and induced subgroups The subgroup induction property The technical result

Open questions/problems

Introduction

$\operatorname{Aut}(T_d)$

▶ $T = T_d$: the *d*-regular rooted tree (the root has degree *d* and each other vertex has degree d + 1);



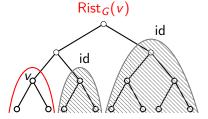
- Vertices of *T_d* are in bijection with finite words on the alphabet {0,..., *d* − 1} (root ↔ Ø the empty word);
- Aut (T_d) is the automorphism group of T_d ;
- T_v is the subtree of T consisting of vertices below v.

Some subgroups of $Aut(T_d)$

Let $G \leq \operatorname{Aut}(T_d)$. The following subgroups play an important role.

- Stabilizers of vertices $\operatorname{Stab}_G(v)$ and of rays $\operatorname{Stab}_G(\xi)$, $\xi \in \partial T$;
- Pointwise stabilizers of levels $Stab_G(\mathcal{L}_n)$;
- Rigid stabilizer of vertices:

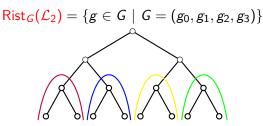
 $\operatorname{Rist}_G(v) \coloneqq \{g \in G \mid g \text{ acts trivially outside } T_v\};$



Some subgroups of $Aut(T_d)$

Let $G \leq Aut(T_d)$. The following subgroups play an important role.

- Stabilizers of vertices $\operatorname{Stab}_G(v)$ and of rays $\operatorname{Stab}_G(\xi)$, $\xi \in \partial T$;
- Pointwise stabilizers of levels $\operatorname{Stab}_G(\mathcal{L}_n)$;
- Rigid stabilizer of vertices;
- Rigid stabilizer of levels: $\operatorname{Rist}_G(\mathcal{L}_n) := \prod_{v \in \mathcal{L}_n} \operatorname{Rist}_G(v)$.



Branch groups

Definition

A subgroup G of Aut (T_d) is branch if all the Rist_G (\mathcal{L}_n) are finite index subgroups of G and G acts minimally on ∂T .

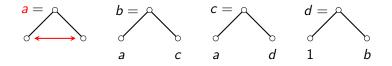
Example

The first Grigorchuk group \mathfrak{G} , the Gupta-Sidki *p*-groups ($p \ge 3$ prime), torsion GGS groups (acting on T_p , $p \ge 3$ prime).

All these examples are infinite, just infinite, torsion, of finite rank, all their maximal subgroups are of finite index, ...

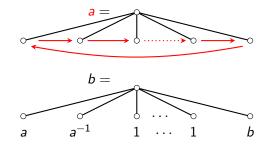
The first Grigorchuk group

The first Grigorchuk group $\mathfrak{G} = \langle a, b, c, d \rangle$ acts on T_2 and is generated by



The Gupta-Sidki p-group

The group G_p acts on T_p ($p \ge 3$ prime) and is generated by a and b, where



GGS groups

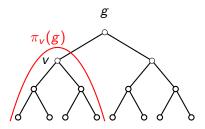
Let p ≥ 3 be a prime and let e = (e₀,..., e_{p-2}) be a vector in (F_p)^{p-1} \ {0}. The GGS group G_e = ⟨a, b⟩ with defining vector e is the subgroup of Aut(T_p) generated by

$$a =$$
 cyclic permutation $(12 \dots p)$ of the first level vertices
 $b = (a^{e_0}, \dots, a^{e_{p-2}}, b)$

- The group $G_{\mathbf{e}}$ is torsion if and only if $\sum_{i=0}^{p-2} e_i = 0$.
- The Gupta-Sidki p-group correspond to the special case e = (1, -1, 0, ..., 0).

Self-replicating groups

For v a vertex of T and $g \in \text{Stab}_{\text{Aut}(T)}(v)$, the section $\pi_v(g)$ of g at v is the automorphism of T_v induced by g.



Definition

A group $G \leq \operatorname{Aut}(T)$ is self-replicating (or fractal) if for every vertex v in T we have $\pi_v(\operatorname{Stab}_G(v)) = G$.

Example

The groups \mathfrak{G} and G_e are self-replicating.

Recall that a maximal subgroup of G is a maximal element in the lattice of proper subgroups of G.

Definition

A weakly maximal subgroup is a maximal element in the lattice of infinite index subgroups of G.

Weakly maximal subgroups

- If G is finitely generated, then every infinite index subgroup is contained in a weakly maximal subgroup (use Zorn's Lemma).
- If M ≤ G is both maximal and of infinite index, then it is weakly maximal.
- If G ≤ Aut(T) is branch, then the parabolic subgroups Stab_G(ξ), ξ ∈ ∂T, are weakly maximal, infinite and pairwise distinct [Bartholdi – Grigorchuk, 2000].

Weakly maximal subgroups of branch groups

Question (Grigorchuk, 2005)

Describe all weakly maximal subgroups of \mathfrak{G} .

- ► (Pervova, 2011) Concrete example of a weakly maximal subgroup W_P of 𝔅 which is not parabolic.
- (Bou-Rabee L. Nagnibeda, 2016) If G is branch and contains a finite subgroup F that fixes no rays, then it contains uncountably many non parabolic weakly maximal subgroups (non-constructive proof).
- ► (L., 2019) Complete description of the weakly maximal subgroups of 𝔅 and of torsion GGS groups.

The main theorem

Theorem (L., 2019)

Let \mathcal{G} be either the first Grigorchuk group, or a torsion GGS group. Weakly maximal subgroups of \mathcal{G} belong to one of the following two classes: generalized parabolic subgroups and weakly maximal subgroups with a block structure. These two classes admit many characterization, as shown in the following table.

generalized parabolic	with block structure
finite type	not finite type
$\forall v : Rist_W(v)$ is infinite	$\exists v : Rist_W(v) = \{1\}$
$W \curvearrowright \partial T$ has infinitely many	$W \curvearrowright \partial T$ has finitely many
orbits-closure	orbits-closure
$\forall n \exists v \in \mathcal{L}_n : [\pi_v(\mathcal{G}) : \pi_v(W)]$	$\exists n \forall v \in \mathcal{L}_n : [\pi_v(\mathcal{G}) : \pi_v(W)]$
is infinite	is finite

Remarks on the main theorem

- Let G be a finitely generated branch group. Then every finite index subgroup H of G satisfies
 - 1. *H* is of finite type;
 - 2. $\forall v : \operatorname{Rist}_{H}(v)$ is infinite;
 - 3. $H \curvearrowright \partial T$ has finitely many orbits-closure;
 - 4. $\exists n \forall v \in \mathcal{L}_n : [\pi_v(\mathfrak{G}) : \pi_v(H)]$ is finite.

If W ≤ G is weakly maximal, then either it satisfies both Property 1 and 2 or it satisfies both Properties 3 and 4. Two types of weakly maximal subgroups

Generalized parabolic subgroups

Definition

A generalized parabolic subgroup of $G \leq Aut(T)$ is a setwise stabilizer $SStab_G(C)$ where

- $C \subseteq \partial T$ is closed;
- C has empty interior (i.e. is nowhere dense);
- the action of $SStab_G(C)$ on C is minimal.

Example

- $C = \{\xi\}$ for $\xi \in \partial T$;
- $C = F.{\xi}$ where F is a finite subgroup of G.

Properties

Lemma

Let $G \leq \operatorname{Aut}(T)$ be a branch group and let C be a closed subset of ∂T . Then $\operatorname{SStab}_G(C)$ is weakly maximal if and only if it is generalized parabolic.

Lemma

Let G be branch. Then generalized parabolic subgroups are infinite and pairwise distinct (SStab_G(C_1) \neq SStab_G(C_2) if $C_1 \neq C_2$).

Corollary

Any branch group with an element of finite order contains a continuum of generalized parabolic subgroups that are not parabolic (they are all weakly maximal).

Proof.

Take $g \in G$ of finite order and look at the $\langle g \rangle$ -orbits on ∂T .

Properties (2)

Let $G \leq Aut(T)$ be a branch group and $W \leq G$ be a generalized parabolic subgroup. Then

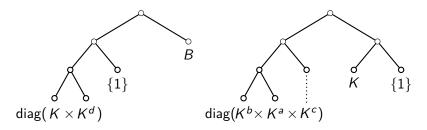
- ▶ all the $Rist_W(v)$ are infinite;
- the action $W \curvearrowright \partial T$ has infinitely many orbits-closure.

Let $G \leq \operatorname{Aut}(T)$ be a regular branch group over K. If G is torsion, then there exists a continuum of generalized parabolic subgroups of G of the form $\operatorname{SStab}_G(C)$ where C is a nowhere dense Cantor subset of ∂T .

Block subgroups: examples

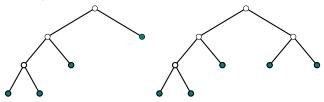
Recall that the first Grigorchuk group $\mathfrak{G} = \langle a, b, c, d \rangle$ is regularly branch over K and we have $K <_2 B = \langle b \rangle^{\mathfrak{G}} <_8 \mathfrak{G}$.

Example



Let $G \leq Aut(T)$ be self-replicating branch group. A block subgroup of G is given by

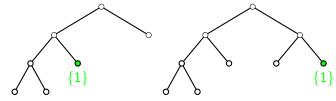
► a transversal U of T (every ξ ∈ ∂T passes through exactly 1 vertex of U);



Let $G \leq Aut(T)$ be self-replicating branch group. A block subgroup of G is given by

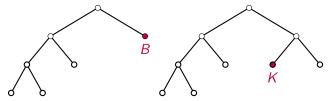
 \blacktriangleright a transversal U of T;

zero or more trivial blocks;



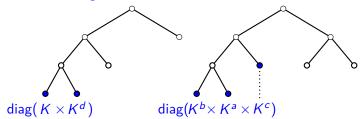
Let $G \leq Aut(T)$ be self-replicating branch group. A block subgroup of G is given by

- \blacktriangleright a transversal U of T;
- zero or more trivial block;
- zero or more full block: finite index subgroup of G (more precisely of π_v(Rist_G(v));



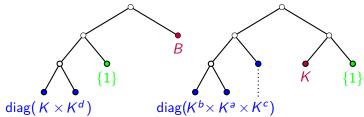
Let $G \leq Aut(T)$ be self-replicating branch group. A block subgroup of G is given by

- \blacktriangleright a transversal U of T;
- zero or more trivial block;
- zero or more full block;
- zero or more diagonal blocks;

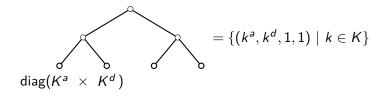


Let $G \leq Aut(T)$ be self-replicating branch group. A block subgroup of G is given by

- \blacktriangleright a transversal U of T;
- zero or more trivial block;
- zero or more full block;
- zero or more diagonal blocks;
- such that U is the union of vertices of trivial, full and diagonal blocks.



Diagonal subgroup: an example



Diagonal subgroups: definition

Let $G \leq \operatorname{Aut}(T)$ be a self-replicating branch group. A diagonal subgroup D of G is given by $(\{v_i\}_{i=1}^n, H, (H_i)_{i=1}^n, \{\psi_i\}_{i=1}^n)$ where $n \geq 2$ and

- ▶ the v_i are pairwise orthogonal vertices (if $i \neq j$, we have both $v_i \neq v_j$ and $v_j \neq v_i$);
- ► *H* is a finite index subgroup of *G*;

$$\blacktriangleright H_i \leq G \leq \operatorname{Aut}(T_{v_i});$$

▶ ψ_i : $H \to H_i$ is an isomorphism.

$$D = \operatorname{diag}(\psi_1(H_1) \times \cdots \times \psi_n(H_n))$$
$$= \{g \in \prod_{i=1}^n \operatorname{Rist}(v_i) \mid \exists h \in H : \forall i \, \pi_{v_i}(g) = \psi_i(h)\}$$

Block subgroups: properties

Let *B* be a block subgroup of a finitely generated, self-replicating branch group $G \leq Aut(T)$. Then

- B is finitely generated;
- If B has no trivial blocks and at least one diagonal block, then it is of infinite index and every weakly maximal subgroup W containing B is not generalized parabolic;
- In particular, there exists infinitely many weakly maximal subgroups of G that are not generalized parabolic.

Block structure

Definition

Let G be a self-replicating branch group. A subgroup H of G is said to have a block structure if it contains a block subgroup B such that $[H : B] < \infty$.

Lemma

If W is a weakly maximal subgroup with block structure, then

- there exists v such that $\operatorname{Rist}_W(v) = \{1\}$;
- there exists n such that for every vertex v of level n we have [π_v(G) : π_v(W)] < ∞.</p>

Technical tools

The non-rigidity tree

An "inverse" operation to $SStab_G(\cdot)$

Let $G \leq \operatorname{Aut}(T)$ be a branch group and $H \leq G$.

Definition

The non-rigidity tree NR(H) of H is the subgraph of T generated by the vertices v such that $\text{Rist}_{H}(v)$ has infinite index in $\text{Rist}_{G}(v)$.

- NR(H) is a tree containing the root of T (unless H is of finite index in which case NR(H) = Ø);
- If W is weakly maximal, then NR(W) has no leaf;
- ▶ If $W = SStab_G(C)$ is generalized parabolic, then $C = \partial NR(SStab_G(C))$ and $W = SStab_G(NR(W))$;

Definition

Two weakly maximal subgroups W_1 and W_2 of $G \le Aut(T)$ are tree-equivalent if there exists $\varphi \in Aut(T)$ such that $NR(W_2) = \varphi(NR(W_1))$.

- The class of parabolic subgroups is a tree-equivalence class;
- The class of generalized parabolic subgroups is a union of tree-equivalence classes.

Many tree-equivalence classes

Proposition

Let G be a torsion branch group. Then

- It contains a continuum of tree-equivalence classes of generalized parabolic subgroups, each classes containing infinitely many subgroups;
- It contains infinitely many tree-equivalence classes of generalized parabolic subgroups, each classes containing a continuum of subgroups.

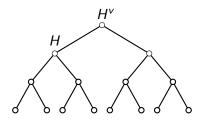
Induction of weakly maximal subgroups

An "inverse" operation to $\pi_{\nu}(\cdot)$

Definition

Let $G \operatorname{Aut}(T)$ be a self-replicating group, $v \in T$ and $H \leq G$. The subgroup of G induced by H is

$$H^{m{
u}}\coloneqq \{g\in {\sf Stab}_G(m{
u})\mid \pi_{m{
u}}(g)\in H\}$$

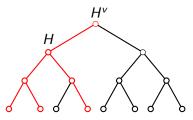


Properties

Proposition (L., 2019)

Let $G \leq Aut(T)$ be a finitely generated, self-replicating branch group, v a vertex of T and $H \leq G$. Then

 $\blacktriangleright \mathsf{NR}(H^{\mathsf{v}}) = [\emptyset, \mathsf{v}] \cup \mathsf{NR}(H);$



- $[G: H^{v}]$ is finite if and only if [G: H] is finite;
- H^{v} is weakly maximal if and only if H is weakly maximal;
- H^v is finitely generated if and only if H is finitely generated;
- ▶ $\pi_v(H^v) = H$ and $(\pi_v(H))^v \ge H$. Moreover, if H is weakly maximal and $\mathcal{L}_n \cap NR(H) = \{v\}$, then $(\pi_v(H))^v = H$. (i.e. you can cut the beginning of the trunk of NR(H), or add some

The induction subgroup property

Theorem (Grigorchuk-L.-Nagnibeda, 2020)

Let G be a finitely generated self-replicating branch group. Then G has the induction subgroup property if and only if finitely generated subgroups of G coincide with subgroups with a block structure.

Theorem

The following groups have the subgroup induction property:

- the first Grigorchuk group (Grigorchuk Wilson, 2003);
- the Gupta-Sidki 3-group (Garrido, 2016);
- ▶ torsion GGS groups (Francoeur L., 2020⁺).

Proposition (Francoeur – L., 2020⁺)

If G has the subgroup induction property, then it is torsion and just infinite.

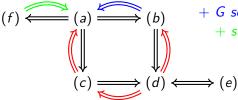
A technical result

Theorem (L., 2019)

Let $G \leq Aut(T)$ be a f. g. branch group and $W \leq G$ a weakly maximal subgroup. For the following properties that W may have,

(a) W has a block structure(b) $\exists n \forall v \in \mathcal{L}_n : [\pi_v(G) : \pi_v(W)] < \infty$ (c) $\exists v : \operatorname{Rist}_W(v) = \{1\}$ (d) $W \frown \partial T$ has $< \infty$ orbits closure(e) W not generalized parabolic(f) rank(W) < \infty

we have the implications



+ G self-replicating and just infinite + subgroup induction property G = & or torsion GGS Open questions/problems

Open questions and problems

- This is not a classification!
- These methods can only produce closed (in the profinite topology) subgroups, and hence cannot detect maximal subgroups of infinite index.
- Conjecture: The main theorem holds in any finitely generated, self-replicating branch group with the subgroup induction property.

