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Main goals

I Describe two families of weakly maximal subgroups of branch
groups;

I Give several characterizations of these families;
I Show that every weakly maximal subgroup of the first

Grigorchuk group belongs to one of these two families.
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Introduction



Aut(Td)

I T = Td : the d-regular rooted tree (the root has degree d and
each other vertex has degree d + 1);

v
Tv

I Vertices of Td are in bijection with finite words on the alphabet
{0, . . . , d − 1} (root ↔ ∅ the empty word);

I Aut(Td) is the automorphism group of Td ;
I Tv is the subtree of T consisting of vertices below v .



Some subgroups of Aut(Td)

Let G ≤ Aut(Td). The following subgroups play an important role.
I Stabilizers of vertices StabG(v) and of rays StabG(ξ), ξ ∈ ∂T ;
I Pointwise stabilizers of levels StabG(Ln);
I Rigid stabilizer of vertices:

RistG(v) := {g ∈ G | g acts trivially outside Tv};
RistG(v)

v
id

id



Some subgroups of Aut(Td)

Let G ≤ Aut(Td). The following subgroups play an important role.
I Stabilizers of vertices StabG(v) and of rays StabG(ξ), ξ ∈ ∂T ;
I Pointwise stabilizers of levels StabG(Ln);
I Rigid stabilizer of vertices;
I Rigid stabilizer of levels: RistG(Ln) :=

∏
v∈Ln RistG(v).

RistG(L2) = {g ∈ G | G = (g0, g1, g2, g3)}



Branch groups

Definition
A subgroup G of Aut(Td) is branch if all the RistG(Ln) are finite
index subgroups of G and G acts minimally on ∂T .

Example
The first Grigorchuk group G, the Gupta-Sidki p-groups (p ≥ 3
prime), torsion GGS groups (acting on Tp, p ≥ 3 prime).
All these examples are infinite, just infinite, torsion, of finite rank,
all their maximal subgroups are of finite index, ...



The first Grigorchuk group

The first Grigorchuk group G = 〈a, b, c, d〉 acts on T2 and is
generated by

a =

a c

b =

a d

c =

1 b

d =



The Gupta-Sidki p-group

The group Gp acts on Tp (p ≥ 3 prime) and is generated by a and
b, where

a =

a a−1 1 1 b

b =

. . .
. . .



GGS groups

I Let p ≥ 3 be a prime and let e = (e0, . . . , ep−2) be a vector in
(Fp)p−1 \ {0}. The GGS group Ge = 〈a, b〉 with defining vector
e is the subgroup of Aut(Tp) generated by

a = cyclic permutation (12 . . . p) of the first level vertices
b = (ae0 , . . . , aep−2 , b)

I The group Ge is torsion if and only if
∑p−2

i=0 ei = 0.
I The Gupta-Sidki p-group correspond to the special case

e = (1,−1, 0, . . . , 0).



Self-replicating groups
For v a vertex of T and g ∈ StabAut(T )(v), the section πv (g) of g
at v is the automorphism of Tv induced by g .

v

g

πv (g)

Definition
A group G ≤ Aut(T ) is self-replicating (or fractal) if for every
vertex v in T we have πv

(
StabG(v)

)
= G .

Example
The groups G and Ge are self-replicating.



Weakly maximal subgroups

Recall that a maximal subgroup of G is a maximal element in the
lattice of proper subgroups of G .

Definition
A weakly maximal subgroup is a maximal element in the lattice of
infinite index subgroups of G .



Weakly maximal subgroups

I If G is finitely generated, then every infinite index subgroup is
contained in a weakly maximal subgroup (use Zorn’s Lemma).

I If M ≤ G is both maximal and of infinite index, then it is
weakly maximal.

I If G ≤ Aut(T ) is branch, then the parabolic subgroups
StabG(ξ), ξ ∈ ∂T , are weakly maximal, infinite and pairwise
distinct [Bartholdi – Grigorchuk, 2000].



Weakly maximal subgroups of branch groups

Question (Grigorchuk,2005)
Describe all weakly maximal subgroups of G.

I (Pervova, 2011) Concrete example of a weakly maximal
subgroup WP of G which is not parabolic.

I (Bou-Rabee – L. – Nagnibeda, 2016) If G is branch and
contains a finite subgroup F that fixes no rays, then it contains
uncountably many non parabolic weakly maximal subgroups
(non-constructive proof).

I (L., 2019) Complete description of the weakly maximal
subgroups of G and of torsion GGS groups.



The main theorem

Theorem (L., 2019)
Let G be either the first Grigorchuk group, or a torsion GGS group.
Weakly maximal subgroups of G belong to one of the following two
classes: generalized parabolic subgroups and weakly maximal
subgroups with a block structure. These two classes admit many
characterization, as shown in the following table.

generalized parabolic with block structure
finite type not finite type
∀v : RistW (v) is infinite ∃v : RistW (v) = {1}
W y ∂T has infinitely many
orbits-closure

W y ∂T has finitely many
orbits-closure

∀n∃v ∈ Ln : [πv (G) : πv (W )]
is infinite

∃n∀v ∈ Ln : [πv (G) : πv (W )]
is finite



Remarks on the main theorem

I Let G be a finitely generated branch group. Then every finite
index subgroup H of G satisfies
1. H is of finite type;
2. ∀v : RistH(v) is infinite;
3. H y ∂T has finitely many orbits-closure;
4. ∃n∀v ∈ Ln : [πv (G) : πv (H)] is finite.

I If W ≤ G is weakly maximal, then either it satisfies both
Property 1 and 2 or it satisfies both Properties 3 and 4.



Two types of weakly maximal subgroups



Generalized parabolic subgroups

Definition
A generalized parabolic subgroup of G ≤ Aut(T ) is a setwise
stabilizer SStabG(C) where
I C ⊆ ∂T is closed;
I C has empty interior (i.e. is nowhere dense);
I the action of SStabG(C) on C is minimal.

Example
I C = {ξ} for ξ ∈ ∂T ;
I C = F .{ξ} where F is a finite subgroup of G .



Properties

Lemma
Let G ≤ Aut(T ) be a branch group and let C be a closed subset of
∂T. Then SStabG(C) is weakly maximal if and only if it is
generalized parabolic.

Lemma
Let G be branch. Then generalized parabolic subgroups are infinite
and pairwise distinct (SStabG(C1) 6= SStabG(C2) if C1 6= C2).

Corollary
Any branch group with an element of finite order contains a
continuum of generalized parabolic subgroups that are not parabolic
(they are all weakly maximal).

Proof.
Take g ∈ G of finite order and look at the 〈g〉-orbits on ∂T .



Properties (2)

Let G ≤ Aut(T ) be a branch group and W ≤ G be a generalized
parabolic subgroup. Then
I all the RistW (v) are infinite;
I the action W y ∂T has infinitely many orbits-closure.



Another example

Let G ≤ Aut(T ) be a regular branch group over K . If G is torsion,
then there exists a continuum of generalized parabolic subgroups of
G of the form SStabG(C) where C is a nowhere dense Cantor
subset of ∂T .



Block subgroups: examples

Recall that the first Grigorchuk group G = 〈a, b, c, d〉 is regularly
branch over K and we have K <2 B = 〈b〉G <8 G.

Example

K Kd

{1}

B

×diag( ) Kb K a

K {1}

×diag( ×K c)



Block subgroups

Let G ≤ Aut(T ) be self-replicating branch group. A block subgroup
of G is given by
I a transversal U of T (every ξ ∈ ∂T passes through exactly 1

vertex of U);



Block subgroups

Let G ≤ Aut(T ) be self-replicating branch group. A block subgroup
of G is given by
I a transversal U of T ;
I zero or more trivial blocks;

{1} {1}



Block subgroups

Let G ≤ Aut(T ) be self-replicating branch group. A block subgroup
of G is given by
I a transversal U of T ;
I zero or more trivial block;
I zero or more full block: finite index subgroup of G (more

precisely of πv (RistG(v));

B

K



Block subgroups

Let G ≤ Aut(T ) be self-replicating branch group. A block subgroup
of G is given by
I a transversal U of T ;
I zero or more trivial block;
I zero or more full block;
I zero or more diagonal blocks;

K Kd×diag( ) Kb K a×diag( ×K c)



Block subgroups

Let G ≤ Aut(T ) be self-replicating branch group. A block subgroup
of G is given by
I a transversal U of T ;
I zero or more trivial block;
I zero or more full block;
I zero or more diagonal blocks;
I such that U is the union of vertices of trivial, full and diagonal

blocks.

K Kd

{1}

B

×diag( ) Kb K a

K {1}

×diag( ×K c)



Diagonal subgroup: an example

K a Kd×diag( )

= {(ka, kd , 1, 1) | k ∈ K}



Diagonal subgroups: definition

Let G ≤ Aut(T ) be a self-replicating branch group. A diagonal
subgroup D of G is given by ({vi}ni=1,H, (Hi)n

i=1, {ψi}ni=1) where
n ≥ 2 and
I the vi are pairwise orthogonal vertices (if i 6= j , we have both

vi 6= vj and vj 6= vi);
I H is a finite index subgroup of G ;
I Hi ≤ G ≤ Aut(Tvi );
I ψi : H → Hi is an isomorphism.

D = diag(ψ1(H1)× · · · × ψn(Hn)

= {g ∈
n∏

i=1
Rist(vi) | ∃h ∈ H : ∀i πvi (g) = ψi(h)}



Block subgroups: properties

Let B be a block subgroup of a finitely generated, self-replicating
branch group G ≤ Aut(T ). Then
I B is finitely generated;
I If B has no trivial blocks and at least one diagonal block, then

it is of infinite index and every weakly maximal subgroup W
containing B is not generalized parabolic;

I In particular, there exists infinitely many weakly maximal
subgroups of G that are not generalized parabolic.



Block structure

Definition
Let G be a self-replicating branch group. A subgroup H of G is said
to have a block structure if it contains a block subgroup B such
that [H : B] <∞.

Lemma
If W is a weakly maximal subgroup with block structure, then
I there exists v such that RistW (v) = {1};
I there exists n such that for every vertex v of level n we have

[πv (G) : πv (W )] <∞.



Technical tools



The non-rigidity tree
An “inverse” operation to SStabG(·)

Let G ≤ Aut(T ) be a branch group and H ≤ G .

Definition
The non-rigidity tree NR(H) of H is the subgraph of T generated
by the vertices v such that RistH(v) has infinite index in RistG(v).

I NR(H) is a tree containing the root of T (unless H is of finite
index in which case NR(H) = ∅);

I If W is weakly maximal, then NR(W ) has no leaf;
I If W = SStabG(C) is generalized parabolic, then

C = ∂ NR
(
SStabG(C)

)
and W = SStabG

(
NR(W )

)
;



Tree-equivalence

Definition
Two weakly maximal subgroups W1 and W2 of G ≤ Aut(T ) are
tree-equivalent if there exists ϕ ∈ Aut(T ) such that
NR(W2) = ϕ

(
NR(W1)

)
.

I The class of parabolic subgroups is a tree-equivalence class;
I The class of generalized parabolic subgroups is a union of

tree-equivalence classes.



Many tree-equivalence classes

Proposition
Let G be a torsion branch group. Then
I It contains a continuum of tree-equivalence classes of

generalized parabolic subgroups, each classes containing
infinitely many subgroups;

I It contains infinitely many tree-equivalence classes of
generalized parabolic subgroups, each classes containing a
continuum of subgroups.



Induction of weakly maximal subgroups
An “inverse” operation to πv (·)

Definition
Let G Aut(T ) be a self-replicating group, v ∈ T and H ≤ G . The
subgroup of G induced by H is

Hv := {g ∈ StabG(v) | πv (g) ∈ H}

Hv

H



Properties
Proposition (L., 2019)
Let G ≤ Aut(T ) be a finitely generated, self-replicating branch
group, v a vertex of T and H ≤ G. Then
I NR(Hv ) = [∅, v ] ∪ NR(H);

Hv

H

I [G : Hv ] is finite if and only if [G : H] is finite;
I Hv is weakly maximal if and only if H is weakly maximal;
I Hv is finitely generated if and only if H is finitely generated;
I πv (Hv ) = H and

(
πv (H)

)v ≥ H. Moreover, if H is weakly
maximal and Ln ∩ NR(H) = {v}, then

(
πv (H)

)v = H. (i.e.
you can cut the beginning of the trunk of NR(H), or add some
trunk to NR(H).)



The induction subgroup property

Theorem (Grigorchuk-L.-Nagnibeda, 2020)
Let G be a finitely generated self-replicating branch group. Then G
has the induction subgroup property if and only if finitely generated
subgroups of G coincide with subgroups with a block structure.

Theorem
The following groups have the subgroup induction property:
I the first Grigorchuk group (Grigorchuk – Wilson, 2003);
I the Gupta-Sidki 3-group (Garrido, 2016);
I torsion GGS groups (Francoeur – L., 2020+).

Proposition (Francoeur – L., 2020+)
If G has the subgroup induction property, then it is torsion and just
infinite.



A technical result
Theorem (L., 2019)

Let G ≤ Aut(T ) be a f. g. branch group and W ≤ G a weakly
maximal subgroup. For the following properties that W may have,

(a)W has a block structure (b)∃n∀v ∈ Ln : [πv (G) : πv (W )] <∞
(c)∃v : RistW (v) = {1} (d)W y ∂T has <∞ orbits closure
(e)W not generalized parabolic (f ) rank(W ) <∞

we have the implications

(f ) (a) (b)

(c) (d) (e)

+ G self-replicating and just infinite
+ subgroup induction property

G = G or torsion GGS



Open questions/problems



Open questions and problems

I This is not a classification!
I These methods can only produce closed (in the profinite

topology) subgroups, and hence cannot detect maximal
subgroups of infinite index.

I Conjecture: The main theorem holds in any finitely generated,
self-replicating branch group with the subgroup induction
property.
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