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Convergence of finite graphs

Let {Γn}n be a sequence of finite transitive graphs of bounded
degree. We say that a graph Γ is the limit of {Γn}n if for every r ,
there exists N such that for all n > N, the ball of radius r in Γn is
isomorphic to the ball of radius r in Γ.
If {Γn}n are not transitive, one has to consider convergence of
rooted graphs. The limit depends on the choice of the roots
vn ∈ Γn!

Definition (Benjamini-Schramm)

Let {Γn}n be an arbitrary sequence of finite graphs of bounded
degree. One can consider them as rooted graphs by choosing a
root in each Γn uniformly at random. This defines a sequence of
probability measures on the space of (isomorphism classes of)
rooted graphs, and one can consider its weak limit and call it the
Benjamini-Schramm limit of the sequence {Γn}n.

The Benjamini-Schramm limit is a probability distribution on the
space of rooted graphs supported by the limits of the sequence of
graphs {Γn}n for all possible choices of roots vn ∈ Γn.



De Bruijn Graphs

An n-dimensional De Bruijn graph on k symbols, Bk,n, is a directed
graph representing overlaps between sequences of symbols. The
vertex set is {0, 1, . . . , k − 1}n, and for all 0 ≤ i ≤ k − 1, there is
an oriented edge from (a1, . . . , an) to (a2, . . . , an, i).

The De Bruijn graph B2,3.

De Bruijn graphs Bk,n are discrete models of the Bernoulli map
x 7→ kx (mod 1) and therefore are of interest in the theory of
dynamical systems. They also have applications in informatics (for
peer-to-peer file sharing and parallel computing) and bioinformatics
(genome assembly algorithms).



Limit of De Bruijn Graphs

Question
What is the Benjamini-Schramm limit of the sequence Bk,n as n
goes to infinity?

Observe that the De Bruijn graphs are not vertex transitive.

Theorem (Grigorchuk - Leemann - Nagnibeda)

The Benjamini-Schramm limit of the sequence {Bk,n}n is the
Diestel-Lieder graph DL(k , k) ∼= Cay(Lk ,X ).

Here Lk = Z/kZ o Z = (
⊕

Z Z/kZ) o Z is the Lamplighter group
on Z = 〈t〉 with lamp group Z/kZ = 〈a〉 and generating system
X = {t, at, . . . , ak−1t}.
In fact, Z/kZ could be replaced by any group with k elements.

GLN also studied a two-parameter generalization of the family {Bk,n}, the so-called
spider-web networks, introduced in theory of networks and studied by physicists for
their properties in percolation.
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The graph DL(k, k) is the horocyclic product of two k + 1 regular
trees. Vertices correspond to couples (v ,w) of same height.

Here, the vertex (v ,w) has 4 neighbors: (v1,w1), (v ′1,w1), (v−1,w−1) and (v−1,w ′−1).

Corollary

The De Bruijn graphs Bk,n provide a sofic approximation of
DL(k, k) ∼= Cay(Lk ,X ).



The Lamplighter Group and its Action on Tk

The proof of the theorem goes via the following basic fact:

The group Lk acts faithfully on a rooted k-regular tree Tk .

This action is transitive on each level and gives rise to Schreier
orbital graphs Γn (with respect to the generators X ).

Grigorchuk and Żuk (2001, for k = 2) and Kambites, Silva and
Steinberg (2006, general case) showed that the action is given by
an automaton and that te extension of this action to the boundary
∂Tk is essentially free. This implies that the Benjamini-Schramm
limit of Γn is Cay(Lk ,X ).

We proved that the De Bruijn graph Bk,n is isomorphic to Γn as
unlabeled graph.
There is now also an independent combintorial proof by P.-H. Leemann that
Bk,n →n→∞ DL(k, k) that hopefully can be generalized to other families of Rauzy
graphs.



Spectral theory

Grigorchuk-Żuk used the action of Lk on the tree to compute the
spectral measure of the Laplacian on Cay(L2,X ):

µCay(Lk ,X ) = (k − 1)2
∑
q≥2

1

kq − 1

( ∑
1≤p<q
(p,q)=1

δ2k(1−cos( p
q
π))

)
.

This was the first example of an infinite transitive graph with
discrete spectral measure.
The convergence of the De Bruijn graphs implies convergence of
the spectral measure in the following sense:

1

kn

kn∑
i=1

δλi
n→∞−−−→ µCay(Lk ,X )

where the λi are the eigenvalues of the Laplacian on Bk,n and the
convergence is the weak convergence of measures.



Complexity

A natural invariant that one can associate to a finite graph Γ is the
number t(Γ) of covering trees. This number is called the
complexity of the graph. For {Γn}n a sequence of finite graphs,
one could try to define the asymptotic complexity as

tas = lim
n

log(t(Γn))

|V (Γn)|
.

In 2003, R. Lyons showed that the limit always exists and can be
directly computed on the Benjamini-Schramm limit of the sequence
{Γn}. If this limit is a transitive graph Γ of degree d , then

tas = log(d)−
∑
j≥1

1

j
pj(o; Γ),

where pk(o; Γ) denotes the probability that the simple random
walk started at o is back at o after k steps.



Complexity and Laplacian

The Kirchhoff’s matrix tree theorem says that if Γ is a finite
connected graph, then t(Γ) · |V (Γ)| is equal to the product of the
non-zero eigenvalues of the Laplacian of Γ.
In other words, if we define the spectral zeta function of Γ as

ζΓ(s) =
∑

λ∈Spec ∆\{0}

λ−s ,

Kirchhoff’s formula says

t(Γ) · |V (Γ)| = e−ζ
′
Γ(0) = D̃et(∆Γ).

By analogy, one can define for Γ infinite, the spectral zeta
function of Γ as

ζΓ(s) =

∫
Spec(∆)

λ−s dµΓ(λ).

In this case, e−ζ
′
Γ(0) can be understood in terms of the so called

Fuglede-Kadison determinant of the Laplacian on Γ.



Convergence of zeta functions

Lemma
Let {Γn} be a sequence of finite d-regular graphs, with
Benjamini-Schramm limit Γ, satisfying

lim sup
n

(∫ ε

0
λ−s dµΓn(λ)

)
ε→0−−−→ 0 (?)

Then

1. the zeta function converge:

1

|V (Γn)|
ζΓn(s)→ ζΓ(s)

2. and
tas({Γn}) = −ζ ′Γ(0) (??)

The sequence {Bk,n}n satisfies the condition (?).

Lyons proved (??) in the more general setting where the Benjamini-Schramm
limit is a unimodular measure.



Complexity of De Bruijn graphs

For De Bruijn graphs, the complexity was first computed by Strok
(1992) using the Hutschenreuther statement:

tBk,n
=

1

kn
χ′Bk,n

(2k) = (n + 1)k−1
n−1∏
i=1

(k i (i + 1))(k−1)2kn−i−1

where χ is the characteristic polynomial of the adjacency matrix.



Theorem
For Γ = DL(k, k) = Cay(Lk ,X ), we have

−ζ ′Lk (0) = tas = lim
n→∞

log(tBk,n
)

kn
= . . .

= log(k) + (k − 1)2
∑
j≥2

log(j)

k j
= log(k)− (k − 1)2 d

ds
Lis(

1

k
)
∣∣∣
s=0

,

where

Lis(z) =
∑
j≥1

z j

j s

is the polylogarithm.

On the other hand, −ζ ′Lk (0) =
∫

Spec(∆) log(λ)dµΓ =

log(k) + (k − 1)2
∑
q≥2

1

kq − 1

( ∑
1≤p<q
(p,q)=1

log(2− 2 cos(
p

q
π))

)



Corollary

We have

−1

2

∑
j≥2

log(j)

k j
=
∑
q≥2

1

kq − 1

( ∑
1≤p<q
(p,q)=1

∑
j≥1

cos(pq jπ)

j

)


