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Goal

Explain links between some well-known graphs in order to better
understand them:
I De Bruijn graphs (dynamical systems and combinatorics,

computer science and bioinformatics),
I Spider web graphs (telephone switching networks, statistical

physics),
I Schreier graphs of the Lampligther group (geometric group

theory, spectrum of Cayley graph).

How it started

Theorem (Balram & Dhar, 2012)
Computation of the spectrum of the Spider web graphs S2,M,N .
“In the limit of M,N →∞, the spectrum becomes purely discrete.
This is very interesting, as the only other known example of a regular
transitive infinite graph with a discrete spectrum of the laplacian is
the Cayley graph of the lamplighter group, or its generalizations.”

Question
Is the limit of the spectra of the Sk,M,N equal to the spectrum of
the Lamplighter group?
Yes. And for good reasons.
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Spider web (di)graphs

Let k ≥ 2.

Definition
For all M,N ∈ N, the spider-web digraph is the labeled digraph
~SN,M = ~Sk,N,M with vertex set {0, . . . , k − 1}N ×M.For every
vertex (x1 . . . xN , i) and every j ∈ {0, . . . , k − 1}, there is a labeled
arc

(x1 . . . xN , i)
j−→ (x2 . . . xN j , i + 1)

(i + 1 is taken modulo M).

Definition
The spider-web graph SN,M = Sk,N,M is the underlying graph of
~Sk,N,M .

Example: ~S2,2,4

i
x1x2

0 1 2 3 4

00

01

10

11

Example: ~S2,3,4

i
x1x2x3

0 1 2 3 4

000

001

010

011

100

101

110

111

Example: ~S3,2,4
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The Lamplighter group

Definition
The Lamplighter group Lk is the restricted wreath product

Z/kZ o Z = (
⊕

Z
Z/kZ) o Z

where Z acts on
⊕

Z Z/kZ by shifting the coordinate.
We have

LK = 〈b, c | ck , [c, bncb−n]; n ∈ N〉.

Generating sets and spectrum

Let Xk = {c̄i := bc i}k−1
i=0 and Yk = {b, c}.

I Both Xk and Yk generate Lk ,
I The spectrum of Cay(Lk ,Xk) is pure point [Grigorchuk & Zuk,

2001],
I The spectrum of Cay(Lk ,Yk) contains no eigenvalue [Elek,

2003].

Cay(Lk , Xk)

I The graph Cay(Lk ,Xk) is isomorphic to the Diestel-Leader
graph DL(k, k) (an horocyclic product of two k + 1 regular
tree).

I In fact, the group Z/kZ can be replaced with any finite group
of cardinality k.

I Vertices: (
⊕

Z Z/kZ) o Z
I Arcs

(. . . x0x1 . . . xi . . . , i)
c̄j−→ (. . . x0x1 . . . xi (xi+1 + j)xi+1 . . . , i + 1)

Main result

Theorem (GLS,2016)
The following diagram commutes, where the arrows stand for
Benjamini-Schramm convergence of unlabeled graphs.

~Sk,N,M
~Cay(Lk, Xk)

~Sk,N,∞ ~Cay(Lk, Xk)

N ∞

M

∞

N,M
∞

N ∞



Corollaries

Corollary
The following diagram commutes, where the arrows stand for
Benjamini-Schramm convergence of unlabeled graphs.

Sk,N,M Cay(Lk, Xk)

Sk,N,∞ Cay(Lk, Xk)

N ∞

M

∞

N,M
∞

N ∞

Corollaries

Corollary
The convergence of the graphs implies convergence of the spectral
measure in the following sense:

1
kN ·M

kN ·M∑
i=1

δλi
n→∞−−−→ µCay(Lk ,Xk )

where the λi are the eigenvalues of the Laplacian on Sk,N,M and the
convergence is the weak convergence of measures.

Convergence of finite rooted graphs

Let (Γn, vn)n be a sequence of finite rooted graphs of bounded
degree.
I We say that a rooted graph (Γ, v) is the limit of (Γn, vn)n if for

every r , there exists N such that for all n > N, the ball of
radius r in (Γn, vn) is isomorphic to the ball of radius r in (Γ, v).

I The limit depends on the choice of the roots vn ∈ Γn.
I Example: the cycles Cn tend to the biinfinite line Z.

Convergence of finite graphs

Definition (Benjamini-Schramm)
Let (Γn)n be a sequence of finite graphs of bounded degree. One
can consider them as rooted graphs by choosing a root in each Γn
uniformly at random. This defines a sequence of probability
measures on the space of (isomorphism classes of) rooted graphs,
and one can consider its weak limit and call it the
Benjamini-Schramm limit of the sequence (Γn)n.
I The Benjamini-Schramm limit is a probability distribution on

the space of rooted graphs, supported by the limits of the
sequence of graphs (Γn)n for all possible choices of roots
vn ∈ Γn.

I In our case, the limit is the Dirac measure at Cay(Lk ,Xk).



Outline of the proof

Consider the de Bruijn digraphs ~Bk,N ∼= ~Sk,N,1 (M = 1).
1. ~Bk,N is isomorphic to the Schreier graph of the action of Lk on

the Nth level of a k-regular rooted tree.
2. These graphs converge to the Cayley graph ~Cay(Lk ,Xk),
3. It is enough to prove the convergence for M = 1.

De Bruijn (di)graphs

I An n-dimensional De Bruijn graph on k symbols, Bk,N , is a
directed graph representing overlaps between sequences of
symbols,

I Vertices: {0, 1, . . . , k − 1}N ,
I Arcs: for every j ∈ {0, . . . , k − 1}

(x1 . . . xN) j−→ (x2 . . . xN j)

I ~Bk,N ∼= ~Sk,N,1.

De Bruijn (di)graphs

I De Bruijn graphs Bk,n are discrete models of the Bernoulli map
x 7→ kx (mod 1) and therefore are of interest in the theory of
dynamical systems.

I They also have applications in informatics (for peer-to-peer file
sharing and parallel computing) and bioinformatics (genome
assembly algorithms).

~B2,1, ~B2,1 and ~B2,3
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The 2-regular rooted tree

T2 = {0, 1}∗

0

00 01
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Action of Lk on a rooted tree

I The group Lk acts faithfully on Tk by

(x1x2x3 . . . ).c̄r =
(
(x1 + r)(x2 + x1)(x3 + x2) . . .

)
I The action is transitive on each levels,
I The graphs of the action, ~Γk,N , look like the ~Bk,N .
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Isomorphisms of graphs

Proposition (GLN,2016)
~Γk,N ∼= ~Bk,N

Proof.
I ~Γk,0 ∼= ~Bk,0 is the rose with k petals,
I ~Γk,N+1 is the line graph of ~Γk,N , (vertices are arcs of ~Γk,N , arcs

are succession of two consecutive arcs of ~Γk,N),
I ~Bk,N+1 is the line graph of ~Bk,N .

Convergence

Proposition (G-Kravchenko, Pedro-Benjamin,GLN)
For all but countably many ξ ∈ ∂T, the oriented graph
~Sch(L,StabL(ξ),Y ) is isomorphic to ~Cay(L,Y ).

Corollary
~Bk,N ∼= ~Γk,N

N→∞−−−−→ ~Cay(Lk ,Xk) and
Bk,N ∼= Γk,N

N→∞−−−−→ Cay(Lk ,Xk).

Tensor product

Definition
Let Γ = (V ,E ) and ∆ = (W ,F ) be two digraphs. The tensor
product Γ⊗∆ is the digraph with vertices V ×W and for every
arcs v → x (in Γ) and w → y (in ∆) an arc (v ,w)→ (x , y).
I This is the categorial product,
I Not necessarily connected,
I Depends on the orientation,
I ~Sk,N,M ∼= ~Bk,N ⊗ ~CM , where ~CM is the oriented cycle of

length M,
I Sk,N,M 6∼= Bk,N ⊗ CM .

Examples of tensor products

a

b

⊗
1 2

=

(a, 1) (a, 2)

(b, 2)(b, 1)

a

b

⊗
1 2

=

(a, 1) (a, 2)

(b, 2)(b, 1)



Examples of tensor products

a

b

⊗
1

2

3

=
(a, 1)

(b, 2) (a, 3)

(b, 1)

(b, 3) (a, 2)

a

b

⊗
1

2

3

=

(a, 2)

(b, 1)

(a, 3)

(b, 2)

(a, 1)

(b, 3)

Tensor product and convergence

Theorem (GLN,16)
If (~Γn, vn)n converges to (~Γ, v) and (~Θm, ym)m converges to (~Θ, y)
then the following diagram is commutative

(
~Γn ⊗ ~Θm, (vn, ym)

)0 (
~Γ ⊗ ~Θm, (v, ym)

)0

(
~Γn ⊗ ~Θ, (vn, y)

)0 (
~Γ ⊗ ~Θ, (v, y)

)0

n ∞

m

∞

n,m

∞

m

∞

n ∞

I ~CM
M→∞−−−−→ ~Z

I All the connected components of ~Cay(Lk ,Xk)⊗ ~CM and of
~Cay(Lk ,Xk)⊗ ~Z are isomorphic to ~Cay(Lk ,Xk),

I All the connected components of ~Bk,N ⊗ ~Z are isomorphic to
~Sk,N,∞.

Theorem
(
~Γn ⊗ ~Θm, (vn, ym)

)0 (
~Γ ⊗ ~Θm, (v, ym)

)0

(
~Γn ⊗ ~Θ, (vn, y)

)0 (
~Γ ⊗ ~Θ, (v, y)

)0

n ∞

m

∞

n,m

∞

m

∞

n ∞

Corollary
The following diagram commutes, where the arrows stand for
Benjamini-Schramm convergence of unlabeled graphs.

~Sk,N,M
~Cay(Lk, Xk)

~Sk,N,∞ ~Cay(Lk, Xk)

N ∞

M

∞

N,M
∞

N ∞

Some consequences 1

I In 1998 Dellorme and Tillich proved that Bk,N is cospectral
with a disjoint union of (weighted) loops and paths,

I Using the tensor product with ~CM , it is easy to extend this
result to Sk,N,M and compute its spectrum,

I Using the convergence, we recover

µCay(Lk ,X) = (k − 1)2 ∑
q≥2

1
kq − 1

( ∑
1≤p<q
(p,q)=1

δ2k(1−cos( p
qπ))

)
.



Some consequences 2
LN Computation of the complexity (number of covering trees)

t(Sk,N,M) (Stok, 1992 for de Bruijn graphs),
I Let Γ = Cay(Lk ,Xk) and let pd (o; Γ) denotes the probability

that the simple random walk started at o is back at o after d
steps. By a general result of Lyons (2003):

∑
j≥1

1
j pj(o; Γ) = log(2k)− lim

N

log(t(Bk,N))
kN

LN Computation of the spectral zeta function for Γ = Cay(Lk ,Xk)

ζΓ(s) =
∫

Spec(Γ)
λ−sdµΓ(λ),

related to the determinant of the Laplacian by
det ∆Γ = e−ζ′

Γ(0).
I . . .

Generalizations

De Bruijn graphs correspond to the full shift on {0, 1, . . . , k − 1}Z.
What happens if we take only a subshift?

Definition
Let Σ be a subshift (closed invariant subset) of {0, 1, . . . , k − 1}Z.
The Rauzy digraphs ~Rk,Σ,N is the digraph with
vertices: admissible words of length N
arcs: x1 . . . xN

xN+1−−−→ x2 . . . xNxN+1 if x1 . . . xNxN+1 is admissible.
As a variation, one can look at ~R�,k,Σ,N , where vertices are
supposed to by cyclically admissible.

The Fibonacci subshift: ~R2,{11},N
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The Fibonacci subshift: ~R�,2,{11},N
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Convergence of Rauzy graphs

Proposition (L.)
Let Σ ≤ {0, 1, . . . , k − 1}Z be an irreducible and weakly aperiodic
subshift of finite type.Then the limit of (~Rk,Σ,N)N is supported on
horocyclic products of trees.
I Observe that Σ is irreducible if and only if all the ~Rk,Σ,N are

strongly connected,
I Is it possible to better understand the measure (not only its

support)?
I Yes. Ongoing project with V. Kaimanovich and T. Nagnibeda

Digraph structure on Σ

We endow Σ with a digraph structure in the following way.
I Vertices: Σ,
I Arcs: there is an arc from ω to ω′ if and only if ω′ is obtained

by shifting ω by 1 and possibly changing the value of ω at 0.
Define g : Σ→ {rooted graphs} by sending ω to the connected
component of the graph Σ containing ω, rooted at ω.

Convergence of Rauzy graphs

Let Σ be an irreducible subshift of finite type.There exists a unique
invariant measure µ that maximizes the Kolmogorov-Sinai entropy
(µ is the limit of the uniform measures on cylinders)

Theorem (KLN,21+)
Let Σ be an irreducible weakly aperiodic subshift of finite type.Then
the digraphs ~R�,k,Σ,N converge to g∗(µ).
Similar result for the convergence of ~Rk,Σ,N .
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