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My research interests lie in geometric and combinatorial group theory, as
well as in symbolic dynamic. I am particularly interested in graphs of dynamical
origin, groups acting on graphs (for examples on rooted trees) and their closed
subgroups and on graphs associated with groups actions (Cayley and Schreier
graphs) and rigidity phenomenon associated to them. Generally speaking, graphs
(either related to applied questions, or viewed from a more abstract point of
view), play an important role in my works and projects.

Below I will develop two specific points. These projects are independent and
can be done one after the other or in parallel, in which case the schedule and
milestones part should be adapted to take this in account.

1 Closed subgroups of branch groups
1.1 Current state of research in the field
This project is at the intersections of three important themes in geometric group
theory: branch groups, self-similar groups and finally the profinite topology and
the (locally) extended residually finite groups (i.e. (L)ERF groups).

A group is just infinite if it is infinite and all its proper quotients are finite.
For an infinite group, this is a natural relax of the simplicity condition: we allow
G to have non-trivial quotients, but only if they are finite, and hence in some
sense trivial from the geometric group theory point of view. This condition is
both natural from the large-scale geometry point of view, and useful in practice
as every finitely generated infinite group admits a just infinite quotient. A major
discovery of Wilson in the 70’ (later refined by Grigorchuk) is that the class of
just infinite groups splits into three subclasses which roughly are infinite simple
groups, herediteraly just infinite groups (every finite index subgroup of G is also
just infinite) and just infinite branch groups. Groups in the last category are
examples of groups acting faithfully on a rooted tree and are characterised by a
rich structures of subgroups, despite being just infinite. One striking example of
such a group is the first Grigorchuk group G, which was the first example of a
group of intermediate growth, and hence also the first example of an amenable
but not elementary amenable group [18, 19]. On the other hand, self-similar
groups naturally appear in dynamics [39] and are examples of automata groups.
Although quite different, these two classes of groups have a large intersection,
and many self-similar groups are also branch. In the class of finitely generated
branch self-similar groups, there are torsion groups and torsion free groups;
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groups of intermediate growth and groups of exponential growth; amenable and
nonamenable groups. Self-similar branch groups are a great source of examples
and counter-examples in group theory and the study of these groups and their
subgroup structure as attired a lot of attention among geometric group theorist
these last years.

Another interesting subject in geometric group theory is the profinite topology.
That is, the topology on G generated by the finite index subgroups (and their
left cosets). A group G is residually finite if the trivial subgroup is closed in the
profinite topology. Residually finite groups are a natural generalisation of finite
groups, and hence are an interesting object of studies. Here are some of their
many characterisations.

Fact 1. For a group G, the following are equivalent

1. G is residually finite,

2. the profinite topology on G is Hausdorf,

3. the intersection of normal subgroups of finite index of G is trivial,

4. For every g ≠ 1, there exists a finite quotient π : G ↠ H such that π(g) ̸= 1,

5. G embeds in its profinite completion,

6. (if G is finitely generated) G acts faithfully on a rooted tree.

By definition, for every group G, finite index subgroups are profinite-closed
(i.e. closed in the profinite topology), and if G is residually finite, then finite
subgroups are also profinite closed. Given a group G, one can then ask the
following

Question 2. What are the profinite closed subgroups of G?

If every subgroup of G is profinite closed, we will say that G is extended
residually finite (ERF), while G is called locally extended residually finite (LERF)
if all its finitely generated subgroups are profinite-closed.

While the class of residually finite groups contains a lot of well-known
examples and has many distinct characterisations, the classes of LERF and ERF
subgroups are less understood. As examples of ERF groups we have finite groups,
finitely generated abelian groups, and virtually polycyclic groups [36]. The class
of LERF groups contains all ERF groups, as well as finitely generated free
groups, surface groups and more generally limits groups [52]. Another interesting
properties of finitely generated free groups is that a product

∏n
i=1 Hi of finitely

many finitely generated subgroups is closed. This remarkable property is known
(for finitely generated groups) only for free groups and some straightforward
generalisations.

Since branch groups are by definition subgroups of Aut(T ), where T is a
rooted tree, they are residually finite. One can hence ask the following.

Question 3. Let G be the first Grigorchuk group. Is it possible to describe all
its profinite-closed subgroups?

Question 4 ([23]). Let H1 to Hn be finitely generated subgroups of G. Is the
subset

∏n
i=1 Hi profinite closed?
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And more generally

Question 5. Which branch groups are LERF?

Some partial results to the above question are already known. For example,
all maximal subgroups of G are of finite index [41] and hence profinite closed.
By [22], this implies that the weakly maximal subgroups of G (subgroups maximal
among infinite index subgroups) are also closed. Finally, it follows from [22]
that G is LERF. It is also known that G cannot be ERF, as it contains subgroups
isomorphic to

⊕
n≥1 C2n which is not ERF.

Finally, an important property in the context of closed subgroups of G ≤
Aut(T ) is the so-called congruence subgroup property which asserts that the
profinite topology on G coincide with the restriction to G of the natural topology
of Aut(T ) (i.e. the topology generated by the pointwise stabilisers of the levels
of the tree). Indeed, if G ≤ Aut(T ) has the congruence subgroup property, then
in order to understand the profinite topology of G we don’t need to look at all
finite index subgroups, but it is enough to look at the stabilisers of the levels
and we can hence more geometric methods. Due to its importance, this property
has been extensively investigated these last twenty years, see [6, 15] and the
references therein. In particular, it is known that G as well as the GGS groups
have the congruence subgroup property [5, 11].

1.2 Current state of personal research
In the context of the profinite topology of branch groups, the right property to
study is the so called subgroup induction property as I demonstrated with my
coauthors. Indeed, we have

Theorem 6 ([32, 20, 12]). Let G be a finitely generated, branch group with the
subgroup induction property. Then

1. G is torsion and just infinite,

2. if G is a p-group, then all maximal subgroups of G are of finite index, and
hence profinite-closed,

3. all weakly maximal subgroups of G are profinite-closed,

4. if G is self-similar and has the congruence subgroup property, it is LERF
(i.e. all finitely generated subgroups are profinite-closed),

5. H ≤ G is finitely generated if and only if there exists a block subgroup
L ≤ H such that the index [H : L] is finite.

Moreover, if G is self-similar, the item 5 is in fact equivalent to the subgroup
induction property.

We will not give here a formal definition (see [32, 20, 12]) of the subgroup
induction property or of block subgroups, but rather focus on some of its
consequences. First of all, heuristically, a block subgroup of G is a subgroup
which is isomorphic to a finite product of finite index subgroups of G, some
of them embedded diagonally; Figures 2 and 1 might helps to represent it. In
particular, the description of a block subgroup use only a finite number of vertices
of T .
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Figure 1: A diagonal subgroup of the first Grigorchuk group G. K is a finite (16)
index subgroup of G. The diagonal subgroup consists in elements g ∈ Aut(T )
that fixe the leaves of the tree and act as ka on the leftmost leaf, as the identity
on the next leaf, etc.

B

{1}

Ka)(Kdiag ×

Figure 2: A block subgroup of the first Grigorchuk group G. B and K are finite
index (8 and 16) subgroups of de G. Here B under the rightmost vertex means
that we consider elements of Aut(T ) that fixe this vertex v and act as an element
of B under the subtree rooted at v. The final subgroup is the product of this
copy of B and of the subgroup diag(K × Ka).

The most striking consequences of the subgroup induction property are
described in Theorem 6, but there are not the only ones. For example, we have

Theorem 7 ([12]). Let G ≤ Aut(Td) be a self-replicating branch group where
Td is a d-regular tree. Suppose that G has the subgroup induction property and
let H be a finitely generated subgroup of G. Then H is commensurable with one
of {1}, G, G2,. . . , Gd−1.

If moreover G is strongly self-replicating, has the congruence subgroup property
and is a p-group, then all maximal subgroups of H are of finite index.

The article [12] contains other consequences of the subgroup induction prop-
erty, while [20] give several equivalent characterisations of it, some of them being
better suited for applications than the original definition from [22]. We also
have the following lemma underline the importance of the congruence subgroup
property.

Lemma 8 ([32]). Let G ≤ Aut(T ) be a branch group with the congruence
subgroup property. Then every subgroup with a block subgroup is closed for the
profinite topology.

Finally, the subgroup induction property has consequences on the cohomology
of the group, has well as on its Cantor-Bendixon rank, see [13, 46, 12].

Since the subgroup induction property is a powerful tool, it is important
to be able to exhibit groups that satisfy it. Until recently, only two groups
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were known to possess the subgroup induction property: the first Grigorchuk
group [22] and the Gupta-Sidki 3-group [14]. With D. Francoeur we recently
showed that all groups in some well-studied infinite family of branch groups have
the desired property.

Theorem 9 ([12]). Let p be a prime and G ≤ Aut(Tp) be a torsion GGS group.
Then G has the subgroup induction property.

Finally, in [32] I completely described the structure of weakly maximal
subgroups of G and torsion GGS groups, completing works from [7] and hence
answering a question of Grigorchuk.

1.3 Detailed research plan
Since G has the subgroup induction property, every finitely generated subgroup
H contains a finite index block subgroup L which is builded using finite index
subgroups Li of G. While this property is useful (for examples, it implies that
G is LERF), in practice it is complicated to deal with arbitrary finite index
subgroups Li of G. We hence plan to replace the finite index subgroups appearing
in the definition of a block subgroup by a unique subgroup K (of index 16) of G.
That is, we plan to prove the following

Conjecture 10. Let H be a finitely generated subgroup of G. Then there exists
a block subgroup L ≤ H that have only blocks over K and such that [H : L] is
finite.

This is on ongoing project with D. Francoeur, R. Grigorchuk and T. Nag-
nibeda. The general structure of the proof of Conjecture 10 is already pretty
clear. The main idea is to show that if H is a finite index subgroup of G that
is isomorphic to Kn, then H is already “geometrically” Kn: that is H is a
block subgroup with n blocks over K. In order to prove that we will use a
rigidity result of Rubin [45] and the structure of the abstract group Aut(K). We
conjecture that Aut(K) is the normaliser NAut(T2)(K) of K in the full group of
automorphisms of the binary rooted tree T2. A similar result is already known
for G itself: Aut(G) = NAut(T2)(G) [17] and preliminary results show that we
should be able to obtain the same equality for K.

Another part of this project is to provide an algorithm that given {g1, . . . , gn}
will return the block structure for ⟨g1, . . . , gn⟩. The main idea here is to rewrote
in the context f G the abstract proof of [20] (which works for all non-virtually
abelian just infinite groups) in a more effective way in order to obtain the
algorithm. We then plan to give another algorithm that given {g1, . . . , gn} and
{h1, . . . , hm} will decide if ⟨g1, . . . , gn⟩ ∩ ⟨h1, . . . , gm⟩ is finitely generated or not.
Both algorithm require a good understanding of Aut(K).

Once Conjecture 10 proved and NAut(T2)(K) fully understood, I plan to give
a positive answer to Question 4. Indeed, one advantage of the block subgroups is
that they are easier to deal with than general finitely generated subgroups. One
easily see that the main technical obstacle to understand the product of two block
subgroups is that diagonal blocks are defined using arbitrary automorphisms
of the finite index subgroups of G. But this is not a real problem if we know
that only a specific subgroup K is involved, and we have a good description of
Aut(K).
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As for Question 3, one must remind that any group can always be written as
an increasing union of finitely generated subgroups. So let H be any subgroup
of G. Then H is the increasing union of finitely generated subgroups Hi. For each
of these Hi, we have a block subgroup Li and one can look at L :=

⋃
i Li. The

hope here is that L would be what can called a generalised block subgroup, that is
similar to a block subgroup but on infinitely many vertices of T . It follows from
the method developed in [32] that such a subgroup is profinite-closed. It will
then remain to show that L as finite index in H, or at least the fact that L closed
implies that H is also closed. As G is not ERF, this approach will sometimes
fails. In fact, it is easy to see that for the copies of

⊕
n≥1 C2n contained in G, all

the Li will be trivial and so will be L. More than a defect of the method, this is
an hint for which subgroups are not closed for ”obvious” reasons, as for examples
increasing unions of finite groups. One can hope to use the above method to
provide a characterisation of profinite-closed subgroups of G.

As we have seen in the last section, the congruence subgroup property (the
fact that the profinite topology on G coincide with the topology induced by
the natural topology of Aut(T )) is an important property in our context. The
following question merits to be studied more deeply.

Question 11. Does the subgroup induction property implies the congruence
subgroup property?

While Theorem 9 give infinitely many examples of groups with the subgroup
induction property, it gives us only p-groups (with p prime); and for a given p,
only finitely many of them. One can hence ask

Question 12. Given a prime number p, are they infinitely many numbers of
p-groups with the induction subgroup property?

Does there exists a group with the subgroup induction property which is not a
p-group for some prime p?

Are there uncountably many groups with the induction subgroup property?

A first step to answer these question is to look at other well-studied family
of branch groups. One might cite GGS groups on the d-regular tree for d not
prime, as well as the Šunić groups. This is a project in collaboration with A.
Thillaisundaram and D. Francoeur.

Finally, one can wonder about the possibility to generalise the above results
and questions to groups that are not necessarily branch. Indeed, if G ≤ Aut(T )
is branch, then the action of G on the boundary ∂T of the tree is what is called
micro-supported. Many results first obtained for branch groups where later
extended to groups with micro-supported actions. On one hand, we gave in [20]
several equivalent definition of the subgroup induction property, one of which
making sense in the more general context of micro-supported actions. On the
other hand, some of the proofs of [12] also work in this generality. Nevertheless,
for now all the known-examples of groups with the subgroup induction property
are branch and it is unclear if there exist examples of non-branch groups with
the subgroup induction property.

1.4 Relevance and impact
This project lies at the intersection of branch groups and of the profinite topology,
both subjects that have been deeply investigated these last years.
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From a topological point of view, it would provide new examples of ERF
groups and of groups answering positively Question 4. This is interesting as G is
far away to look like the only known examples of such groups (free groups and
some of their generailisation). Indeed, G is torsion, amenable, has intermediate
growth and so on. This would hence open a new direction (branch groups, groups
with micro-supported actions) in which might want to search for ERF groups.
These new examples would serve as test cases and help to better understand the
possible restrictions on ERF groups.

From a branch groups point of view, this would allow to better understand
the lattice of subgroup of G. Indeed, G and some other branch groups possess
rather unusual properties and people try to understand these groups as well as
possible. In this context the lattice of subgroups play a particularly important
role, as one can define the “branchness” of a group using it. These continuing
interest is behind the past and present exploration of some specific subgroups of
G, as for example: normal subgroups, finite index subgroups, maximal subgroups,
weakly maximal subgroups and finitely generated subgroups.

2 Rigidity phenomenon in Cayley graphs
2.1 Current state of research in the field
Classically, a representation of a group is defined as an homomorphism G →
GL(V ) = Aut(V ) where V is a vector space, generally over C. People have
tried to generalise this to homomorphisms G → Aut(X) where X is some
“nice geometric space”. In the context of graph theory, one generally ask for
G ∼= Aut(X) as there is too much freedom for Aut(X). This leads us to the
question: What are the finitely generated groups G such that there exists a
connected locally finite graph X with G ∼= Aut(X). Frucht (1939), Groot (1959)
and Sabidussi (1960) have proved all groups can be represented in this way. But
we can still ask the same question, but restricted to graphs with more structure.

Question 13. What are the finitely generated groups G such that there exists
a connected locally finite graph X with G ∼= Aut(X) ans such that Aut(X) acts
both freely and transitively on the vertices of X?

By a result of Sabidussi, this implies that X is a Cayley graph of G, of which
we will recall the definition.

Let G be a group and S a symmetric generating set. One can associate to the
couple (G, S) its Cayley graph Cay(G; S). The vertices of Cay(G; S) are elements
of G and there is an edge between g and h if and only if g−1h is in S. This
well-known construction allow to see G1 as a metric space. The group G naturally
acts on Cay(G; S) by left multiplication, which gives us an embedding of G into
the group Aut(Cay(G; S)) of the automorphisms of Cay(G; S). Question 13 is
hence equivalent to

Question 14. What are the finitely generated groups G such that there exists a
finite generating set S for which the only automorphisms of Cay(G; S) are the
translation by elements of G?

1Or more precisely the couple (G; S). But given two finite generating sets S and T , the
graphs Cay(G; S) and Cay(G; T ) are quasi-isometric.
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If Cay(G; S) is such a Cayley graph, we call it a graphical rigid representation
(GRR) of G. A group G is rigid if it has at least one GRR. A simple verification
shows that abelian groups (of exponent at least 3) are never rigid. Indeed, the
map g 7→ g−1 is always an element of Aut(Cay(G; S)) \ G. One can also show
that the generalised dicyclic groups are not rigid. Finally, among groups of
order at most 32, they are exactly 13 exceptional groups that are neither rigid,
nor abelian nor dicyclic generalised. This and previous results lead Watkins to
conjecture the following in 1976

Conjecture 15 ([51]). Appart the above counter-examples, every group is rigid.

With the combined effort of many mathematicians (notably Imrich, Watkins,
Nowitz, Hetzel and Godsil) during the years 1969-1978, this conjecture was solved
positively for finite groups [26, 10, 48, 40, 49, 50, 27, 28, 24, 16]. These proofs
use deeply the fact that the groups under consideration are finite (for example,
it uses the Feit-Thompson theorem), and they do not admit straightforward
generalisations to infinite groups. Let us also mention that Babai and Godsil
showed [3] that if G is a nilpotent non-abelian group of odd order, asymptotically
almost all Cayley graphs of G are GRRs.

On the other hand, Watkins showed [30] that a free product of at least 2 and
at most countably many non-trivial groups has a GRR. Moreover, if the group
in question is finitely generated, then the GRR in question is locally finite. Here
the method used is to start with a free group and then consider quotients of it.

Finally, Babai solved the directed version of this problem in a series of two
papers [1, 2], and this without any assumptions on the cardinality of the groups
under questions.

Recent developments in the subject were made in at least three distinct
directions for finite groups. The first one was the study of the Cayley graphs
of G when G is either a finite abelian group of exponent greater than 2, [8],
or a finite generalised dicyclic group, [38]. In both cases, the minimal index
[Aut(Cay(G; S)) : G] was computed. The second other recent development is
the study of some variations of this problems. One can for example ask that
the GRR has small degree, that the Automorphism group acts freely but with
n-orbits on the vertices (n fixed), . . . Finally, Xia and Zheng proved recently
[53] that for finite groups, asymptoticaly a randomly chosen generating set will
give raise to a GRR.

2.2 Current state of personal research
Together with M. de la Salle, we recently proved Conjecture 15 for finitely
generated infinite groups [34, 33]. The main idea of [34] was to split the problem
of finding a GRR into two smaller problems that we solved separately. We
showed that a group G is rigid if and only if there exists a generating set such
that Cay(G; S) has two properties that we called orientation-rigidity and color-
rigidity. One important thing about orientation-rigidity is that it is a monotonous
property: if S ⊆ T and Cay(G; S) is orientation-rigid, then Cay(G; T ) is also
orientation-rigid. We proved

Theorem 16 ([34]). Let G be a group that is neither abelian of exponent greater
than 2 nor generalised dicyclic and let S be a symmetric generating set. Then
Cay(G; T ) is orientation-rigid for T = (S ∪ S2 ∪ S3) \ {1}.
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Observe that this result holds for any group, not necessarily finitely generated,
and that T is finite if S is finite.

We then proceed to prove

Theorem 17 ([34]). Let G be a finitely generated group with an element of
infinite order. Let S be a finitely generated set. Then there exists a finite S ⊂ T
such that Cay(G; T ) is color-rigid.

The maint technical tool involve here is the counting of the number of
triangles to which belong an edge of Cay(G; S) labeled by some s ∈ S.

By combining Theorems 16 and 17 one obtain a proof of Conjecture 15 for
finitely generated groups with an element of infinite order.

The second article [33] was devoted to the proof of

Theorem 18 ([33]). Let G be a finitely generated group which is not virtually
abelian. Let S be a finitely generated set. Then there exists a finite S ⊂ T such
that Cay(G; T ) is color-rigid.

The proof of Theorem 18 is probabilistic and use results of M. Tointon [47]
about commuting probabilities in finitely generated groups.

Using that finitely generated groups are either virtually abelian or have
an element of infinite order, we can conclude and Conjecture 15 is proven for
finitely generated groups. Moreover, the results of [34, 33] can be viewed as a
weak asymptotic statement. Indeed, if G is an infinite finitely generated rigid
group, then for any generating set S our proof provide a generating set S ⊆ T
witnessing the rigidity of G and with |T | ≤ f(|S|) for some explicit function f .

Finally, in [35] we computed the minimal index [Aut(Cay(G; S)) : G] for
finitely generated groups with no GRR.

2.3 Detailed research plan
The aim here is to prove Conjecture 15 for groups that are not finitely generated.
To do that, it seems promising to combine results from [34] and [1]. Indeed, both
Theorem 16 and the results of Babai on the directed analog of Conjecture 15 hold
for general groups. For the general case, the idea is to replace finite generating
set by “small generating set”. We then need to define precisely what we mean
by “small” and to show

Conjecture 19. Let G be an infinite group. Then G always possess a be a
small generating set S and for every such S there exists a small S ⊂ T such that
Cay(G; T ) is orientation-rigid.

Conjecture 20. Let G be an infinite group and T be a small generating set.
Then there always exists a (small) set T ⊂ V such that Cay(G; V ) is color-rigid.

While the general case seems hard, we are confident that the cases of countable
groups is doable. In this case, we can take for the definition of “small”: every
edge of Cay(G; S) belongs to at most finitely many triangles. In this context, I
was able to prove:

Lemma 21. Every countable group G admits a generating set S such that every
edge of Cay(G; S) belongs to at most finitely many triangles.
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However, this is not enough to prove Conjecture 19 and we should prove
the existence of an S satisfying more combinatorial conditions (as for example:
xyz ̸= 1 if {x, x−1}, {y, y−1} and {z, z−1} are pairwise distincts). One can
adapt ideas of Babai [1] to show the existence of an S satisfying a subset of the
desired conditions, but the desired result require more work. However, even if
the combinatorics involved are more complex, this seems feasible.

For Conjecture 20, we plan to do a dichotomy depending if G is virtually
abelian or not. Observe that a countable group might be both torsion and
not-virtually abelian!

If G is a countable virtually abelian group, the idea is to do two steps. Firstly,
we want to show that if H is a countable abelian group, then there exists a
“small” generating set S such that [Aut(Cay(H; S)) : H] = 2; a fact that we
already proved to be true for infinite finitely generated abelian groups [35]. If
the combinatoric is more complex in the countable case than in the finitely
generated case, one can still hope for a not to hard proof of this fact, at least
if H has an element of infinite order. More precisely, it is well-known that a
countable abelian group either has an element of infinite order or is a direct
sum

⊕
p Ap where the Ap are abelian p-groups, p prime. If H has an element

of infinite order, or if all the Ap have finite exponent, then the methods of [35]
should generalise. However, the case where at least one Ap has elements of
unbounded order seems more complicated. Once this step done, we will look
at virtually abelian groups G. In this case, there exists a finite subset T ⊂ G
and an abelian subgroup H such that G = ⟨H, T ⟩. By combining carefully the
results on countable abelian groups and on finitely generated groups, one might
hope for a proof of Conjecture 15 for virtually countable groups.

We now look at the non-virtually abelian case. The idea is to generalise
results of [33] which uses random walks and some ideas of Tointon [47] about
commuting probabilities. Results of [47] are written for random walk (Xn) of law
(µ∗n) where µ is a symmetric measure of finite generating support containing {1}.
For the countable case, we plan to generalise Tointon’s result to the following
context. Let S = {s1, s−1

1 , s2, s−1
2 , . . . } and let µn be the uniform measure on

{1, s±1
1 , s±1

2 , . . . , s±1
n }. We then look at the sequence of random variables (Xn)

of law (µ∗n
n ). If S is finite, then for n ≥ |S| this is the classic random walk. If S

is infinite, this is not anymore a random walk, but this looks like sufficiently like
it so it is reasonable to hope to generalise results of [47] and [33] to this context.

2.4 Relevance and impact
On one hand, the original question of which groups can be represented as an
automorphism groups of a suitably regular graph is itself of great interest and
has attired the attention of many mathematicians. It took 10 years to solve
this question for finite groups, and then a waiting of 40 years before having the
solution for finitely generated groups. I strongly believe that we have now the
right tools to attack it and to hope for a full resolution of it in the next years.
Observe that the (easier) analog for directed graphs is known to be true for any
groups since 1980.

On the other hand, the technics used to attack this problem turned out
to be powerful and versatile. Indeed, not only the articles [34, 33] solved the
original problem for finitely generated groups, the same proofs gave essentially
for free the results for the directed variant (the generating set is S not necessary
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symmetric and C⃗ay(G; S) is a digraph) and the oriented variant (for any x ∈ S,
the element x−1 does not belong to S) for finitely generated groups. The directed
variant was already solved by Babai [1], but with the caveat of always providing
an infinite generating set, while [34, 33] gave a finite generating set. For the
oriented variant, this solved a conjecture raised by Babai in [34, 33]. Observe
that the proof of the oriented variant for finite groups was only obtained in
2018 and use the classification of finite simple groups [37]. While in the directed
case there is nothing more to prove for groups that are not finitely generated,
the oriented version is still open. Our plan to prove Watkin’s conjecture for
countable groups will probably give in the same time a proof for the oriented
version of the conjecture. Other consequences of the results of [34, 33] include
rigidity phenomenon for coverings Cay(G; S) → X where is either transitive
or a Schreier graph of G, see [34] for more details. Once again, a solution to
Conjecture 15 for countable groups is likely to come with generalisations of the
aforementioned rigidity results.

Finally, the technics of [47] and [33] that we plan to generalise further to
countable groups are themselves of interest. Indeed, they allow to push to infinite
groups some results known to be true for finite groups, as “if half of the elements
of a finite group G are of order 2, then G is abelian” that for finitely generated
groups became “if P(g2 = 1) >

√
5−1
2 , then G is virtually abelian (for a suitable

probability measure P)”. It will be nice to obtain similar results for countable
groups or even for arbitrary groups.

3 Limits of Rauzy digraphs
3.1 Current state of research in the field
De Bruijn graphs and their generalisations (spider-web graphs and Rauzy graphs)
are ubiquitous objects used in many areas in science. On one hand, and from a
pure mathematical point of view, they encode in finite objects the comportment
of subshifts and are hence of great interest both for combinatorics and symbolic
dynamics. They also enjoy really good connectivity properties and have remark-
able percolation and spectral properties and, as we will see, are related to the
Lamplighter group. On the other hand, their properties make them useful for
applications. For example, spider-web networks were introduced by Ikeno in
1959 [25] in order to study systems of telephone exchanges. They were later
shown to enjoy interesting properties in percolation, see [42], [43] and [44]. They
are also an important tool for statistical physic [4]. As for Rauzy graphs, they
are extensively used in bioinformatics to encode genome sequences [29].

At this point, let us recall the definition of de Bruijn graphs and their
generalisations. For k ≥ 2, and N ≥ 0 we define the de Bruijn digraph B⃗k,N

as the graph with vertex set {x1 . . . xN | xi ∈ {1, . . . , k}} = {1, . . . , k}N and
for every vertex x1 . . . xN and every y ∈ {1, . . . , k} an arc from x1 . . . xN to
x2 . . . xN y. The undirected graph Bk,N is simply the underlying graph of B⃗k,N .
If M ≥ 1 is an integer, we define the spider-web digraph S⃗k,N,M as the digraph
with vertex set {1, . . . , k}N × M and for every vertex (x1 . . . xN , j) and every
y ∈ {1, . . . , k} an arc from (x1 . . . xN , j) to (x2 . . . xN y, j +1) where j +1 is taken
modulo M . If Σ is a subshift over the alphabet {1, . . . , k} the the Rauzy digraph
R⃗k,N is the subgraph of B⃗k,N generated by all sequences x1 . . . xN that appears
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as a subsequence of some biinfinite word in Σ. Finally, one can naturally define
a spider-web version of Rauzy digraphs.

In 2012 [4], the phycisists Balram and Dhar studied the asymptotic properties
of the sequence of spider-web graphs {Sk,N,M }, for k = 2, where the {Sk,N,1}
are the original de Bruijn graphs Bk,N . In particular, they found, using an
interesting approach based on symmetries, the spectra of graphs S2,N,M and
observed that they converge to a discrete limiting distribution as M, N → ∞.
This discrete distribution of the spectra is a rare phenomenon, which for Cayley
graphs was only known to hold for Cayley graphs of the Lamplighter groups
Lk = Z/kZ ≀ Z = (

⊕
Z Z/kZ)⋊Z. It was hence natural to ask if this was only a

coincidence, or if it followed from some deeper relationship between spider-web
graphs and Lk.

With my coauthors we solved this questions in 2016 [21], showing that the
{Sk,N,M } converge (in the sense of Benjamini-Schramm) to the Cayley graphs
of Lk. Since the convergence of the graphs imply the convergence of the spectral
measure, this fully explained the connection discovered by Balram and Dhar.
Moreover, having a well-identified limiting object allow to better understand
the asymptotic comportement of the family {Sk,N,M }. But this relation is two
ways and it also allows us to do computations on the finite graphs in {Sk,N,M }
in order to obtain result for the infinite Cayley graph of Lk.

While de Bruijn graphs are an important object in combinatorics, they are
sometimes too restrictive and we often (especially for applications) look at their
generalisation: Rauzy graphs. Basically, de Bruijn graphs encode finite sequences
over some given alphabet (for example {A, C, G, T}), where every subsequence
is allowed. For Rauzy graphs, we are allowed to specify a set of forbidden
subsequences, that is to look at a subshift. It is therefore of interest (both from
a pure mathematical point of view and for applications) to generalise to Rauzy
graphs the results known to hold for de Bruijn graphs.

The study of the limit of Rauzy graphs only started recently. It was initiated
in my thesis [31] where some partial results for subshifts of finite type were
obtained by combinatorics methods. Some of the results of [21] and [31] were
later refined in [30]. Finally, in his master thesis [9] take care of the Rauzy
graphs of subshifts of complexity at most linear and showed that in this case
the RΣ,N converge to a biinfinite line.

3.2 Current state of personal research
With my co-authors we developed in 2016 a method that leads to the full
understanding of the infinite discrete model for the {Sk,N,M }, including its
spectral characteristics, via finite approximations, using the notion of Benjamini-
Schramm limit of graphs that has lately become very important in probability
theory. A remarkable feature of the model that we discovered is that it is related
to one of the most interesting and important test-cases in combinatorial group
theory, both algebraically and from the spectral and probabilistic viewpoints,
the lamplighter groups Lk.

Theorem 22 ([21]). The spider-web graphs converge to the Cayley graphs of the
Lamplighter group Lk (for some natural generating set Sk of Lk). More precisely,
we have that limN,M→∞ Sk,N,M = Cay(Lk, Sk), but also that limN→∞ Sk,N,M =
Cay(Lk, Sk) for any fixed M .
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In particular, the spectral measure of the Bk,n converge to the spectral measure
on the Cayley graph of Lk. The same is true for any “reasonable quantity”
associated to the Bk,n.

In order to prove the above theorem, we proved the following two important
structural results:

Theorem 23 ([21]). The directed spider-web graph S⃗k,N,M is isomorphic to the
tensor product B⃗k,N ⊗ C⃗M of a directed de Bruijn graph with a directed cycle on
M vertices.

Theorem 24 ([21]). The de Bruijn graphs Bk,N are isomorphic to Schreier
graphs of the canonical actions of Lk on the k-regular rooted tree.

The description as a tensor product allowed us to concentrate our attention
on the original de Bruijn graphs, while the description these latter as Schreier
graphs imply the convergence to the Cayley graphs of Lk.

For a general subshift and the corresponding Rauzy graphs, the analogous
of Theorem 23 remains true. However, Theorem 24 cannot hold as the Rauzy
graphs are not anymore regular. We hence need a new candidate for the limit,
as well as new technics to show the convergence. Let us recall that in general
the Benjamini-Schramm limit of a family of finite graphs is not necessarily a
graph, but more generally a probability measure on the space of rooted graphs.

At this point I used the following key observation: the Cayley graph of
Lk is isomorphic to an horocyclic product of two (k + 1)-regular tree. Using
combinatorics methods and the Perron-Froebenius theorem I was able to prove
the following

Theorem 25 ([31]). Let Σ be a subshift of finite type (subject to some technical
conditions) and let RΣ,N be the associated Rauzy graphs. Then the limit of RΣ,N

exist and is supported on horocyclic products of (non necessarily regular) trees.
More precisely, there exists an explicit map g from Σ to the space of rooted

graphs such that for every ω ∈ Σ the rooted graph g(ω) is an horocyclic product
of trees and such that limN RΣ,N is supported on g(Σ).

3.3 Detailed research plan
The main objective of this project is to identify the limit of the family of Rauzy
digraphs associated to a given subshift. Put in other words, we aim to extend
the result of [21] to general Rauzy digraphs.

Question 26. Let Σ ⊆ {1, . . . , k}Z be a subshift. What is the limit of the Rauzy
graphs RΣ,n?

We already know that the limit, if it exists, will be a probability measure
on the space of rooted graphs. In a first step we will show that this probability
measure is supported on horocyclic product of trees, that is we plan to extend
Theorem 25 to any subshift. The proof of this phenomenon will be by dychotomy.
For subshifts of finite type, this is mostly combinatoric and we will use the
Perron-Frobenius Theorem. The idea is to follow the general ideas from [31], but
to pay more attention to the technical details to be able to remove the “technical
conditions” from the Theorem’s statement. For subshifts of subexponential
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complexity, Perron-Frobenius Theorem is not anymore available, but combining
dynamical and geometrical arguments we should be able to show that the graphs
are sparse which in our case will be enough to identify the limit. This second
part is a common project with T. Nagnibeda, A. Skripchenko and G. Veprev.
This dichotomy leaves open the case of subshifts of exponential complexity that
are not of finite type. New ideas will be required to tackle this last case, and
the entropy might play an important role.

On a second step, we plan to identify limN RΣ,N as the pushforward of
some measure associated to the subshift. For subshifts of finite type, it would
be the unique measure of maximal entropy. For subshifts of sub-exponential
complexity the situation is less clear and the corresponding measure has yet to
be determined. Preliminaries computations show that limN RΣ,N should be the
pushfoward by the map g described in [31], so we already have a good candidate
both for the map and for the measure (for subshifts of finite type). This part is
a common project with V. Kaimanovich and T. Nagnibeda.

Finally, we will use the above results to do concrete computations, as for
example with the spectral eigenvalues and the spectral measures. One specific
application that interest me is the computation of the complexity of the finite
graphs under consideration, where the complexity τ(Γ) of a finite graph is the
number of coverings trees. This is a natural invariant which is often studied
in the cas of finite graphs. One particular interest of this invariant is that it
admits an algebraic characterisation: τ(Γ) · |V (Γ)| is equal to the product of the
non-zero eigenvalues of the Laplacian of Γ, where |V (Γ)| is the number of vertices
in Γ. For infinite family of finite graphs one are more specifically interested in
the asymptotic complexity τas := limn

log τ(Γn)
|V (Γn)| . R. Lyons showed in 2003 that if

the Γn converge to some limit Γ, then τas exists and can be computed directly
from Γ using random walks. Moreover, under some mild technical hypothesis
(that the de Bruijn graphs satisfy), τas = −ζ ′

Γ(0) where ζΓ is the spectral zeta
function of Γ. Direct computations show that for de Bruinj graphs we have

τas = log(k) − (k − 1)2 d
ds

Lis
( 1

k

)∣∣
s=0

where Lis(z) is the polylogarithm. It is well-known that for Re(s) > 1 the function
Lis(1) is the classical Riemann zeta function. We hence plan to investigate in
more detials the relation between the polylogarithm (and the Riemann zeta
function) and the spectral zeta function on the de Bruijn graphs.

Further developments include the study of Rauzy graphs for subshifts over Zd

or over a general group, as well as the study of subshifts over a countable alphabet.

3.4 Relevance and impacts
Answering Question 26 will be really interesting from a pure mathematics point
of view, but also for the applications. On one hand, this will provide a nice
approximation by finite graphs of subshifts. This will hence provide us with a
better understanding of symbolic dynamic. It will also provide us with a link
between subshifts and horocyclic products of trees (also known as Diestel-Leader
graphs), two subjects that underwent great development these recent years.

On the other hand, computing the limit of the Rk,N will allow us to have a full
understanding of the asymptotic comportment of the associated quantities (as
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the spectral measure or the spectral eigenvalues for example), which is specifically
important for applications.
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